Randomized Phase 3 Trial of Amikacin Liposome Inhalation Suspension (ALIS) for Treatment-Refractory Nontuberculous Mycobacterial (NTM) Lung Disease Caused by *Mycobacterium avium* Complex (MAC) in Adult Patients

ATS 2018
May 18-23, San Diego, CA
Conflict of Interest/Disclaimer

• I was a co-investigator on TR02-112, a study of amikacin liposome inhalation suspension for treatment of refractory *M. avium* complex and *M. abscessus* lung diseases.

• I am a co-investigator on INS-212 CONVERT and INS-312 CONVERT studies of amikacin liposome inhalation suspension for treatment of *M. avium* complex lung disease.

• I am a co-investigator on an Insmed-sponsored IIR study of amikacin liposome inhalation suspension for treatment of *M. abscessus* lung disease.
Background

- *Mycobacterium avium* complex (MAC) accounts for 80% to 85% of NTM lung disease in the United States.\(^1\)

- MAC lung disease is chronic with high morbidity and mortality.
 - Therapeutic options are limited for treatment-refractory disease.\(^2\)

- Amikacin is often reserved for fibrocavitary or severe nodular/bronchiectatic MAC lung disease due to inconvenience, renal and auditory toxicity.\(^2,3\)

NTM, nontuberculous mycobacteria.

Amikacin Liposome Inhalation Suspension (ALIS)

- ALIS\(^a\) is amikacin sulfate (590 mg amikacin base)\(^b\) encapsulated in liposomes for inhalational delivery.

- ALIS was designed to increase amikacin uptake into alveolar macrophages, and limit systemic exposure.\(^1\-^4\)

- Phase 2: ALIS combined with guideline-based therapy (GBT) achieved early and sustained negative sputum cultures in refractory NTM lung disease.\(^1\,^c\)

- CONVERT: ongoing randomized, open-label, phase 3 study of ALIS + GBT in adults with treatment-refractory MAC lung disease (NCT02344004)

\(^a\) Previously referred to as Liposomal Amikacin for Inhalation or LAI.

\(^b\) 623 mg amikacin base per vial; to deliver 590 mg amikacin base to the nebulizer.

\(^c\) Primary endpoint not met in Phase 2 study.

Key inclusion criteria

- ≥ 18 years of age with MAC lung infections documented by ≥ 1 positive sputum or bronchoscopy culture within 6 months and MAC-positive sputum at screening
- At least 6 months of GBT, either ongoing or stopped within 12 months before screening
- Evidence of characteristic lung findings (e.g. nodular infiltrate, cavity) on a chest radiograph or chest computed tomography

Key exclusionary conditions

- Cystic fibrosis
- Active pulmonary tuberculosis
- Immunodeficiency syndromes
- MAC isolates with amikacin MIC > 64 μg/mL
- Active malignancies within 1 year before screening

GBT, guideline-based therapy; MAC, Mycobacterium avium complex; MIC, minimum inhibitory concentration.
CONVERT Study
Randomized, Open-Label Phase 3 Study

Population:
Adults with treatment-refractory MAC lung disease

Screening and 2:1 randomization

Treatment phase
Up to Month 16

ALIS QD + GBT

GBT

Baseline
Month 6

Primary endpoint:
Percentage of patients with culture conversion by 6 months

Off-treatment phase
Up to Month 28

12 Month Off-treatment Follow-up

12 Month Off-treatment Follow-up

End of treatment
3 Months off treatment
End of study

Confirmatory endpoint:
Durability of culture conversion

a At least 6 months treatment with persistently positive sputum cultures for MAC.
b Final analysis at completion of study is durability of culture conversion 3 months off all MAC treatment for patients who complete 12 months of treatment from the first negative culture that defined conversion.

ALIS, amikacin liposome inhalation suspension; GBT, guideline-based therapy; MAC, Mycobacterium avium complex.
CONVERT Study
Patient Disposition

<table>
<thead>
<tr>
<th></th>
<th>ALIS + GBT</th>
<th>GBT Alone</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screened</td>
<td></td>
<td></td>
<td>492</td>
</tr>
<tr>
<td>Screen failure</td>
<td></td>
<td></td>
<td>156</td>
</tr>
<tr>
<td>Intent to treat population (ITT)(^a)</td>
<td>224</td>
<td>112</td>
<td>336</td>
</tr>
<tr>
<td>Safety population</td>
<td>223</td>
<td>112</td>
<td>335</td>
</tr>
<tr>
<td>Study withdrawal</td>
<td>44 (19.6%)</td>
<td>10 (8.9%)</td>
<td>54 (16.1%)</td>
</tr>
</tbody>
</table>

As of data cutoff on July 7, 2017.

\(^a\) All randomized patients.

\(^b\) Randomized patients who received at least 1 dose of ALIS (ALIS+GBT arm) or GBT (GBT alone arm).
Patient Demographic and Disease Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ALIS + GBT N = 224</th>
<th>GBT Alone N = 112</th>
<th>Overall N = 336</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean yr (SD)</td>
<td>64.6 (9.6)</td>
<td>64.9 (10.2)</td>
<td>64.7 (9.8)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>165 (73.7)</td>
<td>68 (60.7)</td>
<td>233 (69.3)</td>
</tr>
<tr>
<td>Body mass index, mean kg/m² (SD)</td>
<td>21.4 (3.9)</td>
<td>21.0 (3.8)</td>
<td>NA</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>158 (70.5)</td>
<td>77 (68.8)</td>
<td>235 (69.9)</td>
</tr>
<tr>
<td>Japanese</td>
<td>35 (15.6)</td>
<td>15 (13.4)</td>
<td>50 (14.9)</td>
</tr>
<tr>
<td>Other Asian</td>
<td>23 (10.3)</td>
<td>10 (8.9)</td>
<td>33 (9.8)</td>
</tr>
<tr>
<td>Other/not reported</td>
<td>5 (2.2)</td>
<td>7 (6.3)</td>
<td>12 (3.6)</td>
</tr>
<tr>
<td>Black/African American</td>
<td>3 (1.3)</td>
<td>3 (2.7)</td>
<td>6 (1.8)</td>
</tr>
<tr>
<td>Underlying lung disease, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronchiectasis only</td>
<td>146 (65.2)</td>
<td>64 (57.1)</td>
<td>210 (62.5)</td>
</tr>
<tr>
<td>COPD only</td>
<td>29 (12.9)</td>
<td>19 (17.0)</td>
<td>48 (14.3)</td>
</tr>
<tr>
<td>COPD and bronchiectasis</td>
<td>22 (9.8)</td>
<td>18 (16.1)</td>
<td>40 (11.9)</td>
</tr>
<tr>
<td>Current smoker, n (%)</td>
<td>26 (11.6)</td>
<td>10 (8.9)</td>
<td>36 (10.7)</td>
</tr>
</tbody>
</table>
CONVERT Study

Primary Endpoint: Culture Conversion by Month 6

<table>
<thead>
<tr>
<th>ITT Population</th>
<th>ALIS + GBT N = 224</th>
<th>GBT Alone N = 112</th>
</tr>
</thead>
<tbody>
<tr>
<td>Converter</td>
<td>65 (29.0%)</td>
<td>10 (8.9%)</td>
</tr>
<tr>
<td>Non-converter</td>
<td>159 (71.0%)</td>
<td>102 (91.1%)</td>
</tr>
<tr>
<td>Adjusted odds ratio (95% CI)</td>
<td>4.220 (2.078, 8.570)</td>
<td></td>
</tr>
<tr>
<td>P value</td>
<td>< 0.0001</td>
<td></td>
</tr>
</tbody>
</table>

* Culture conversion defined as 3 consecutive monthly MAC-negative sputum cultures by Month 6

* Adjusted Odds ratio and p-value are calculated using Cochran-Mantel-Haenszel test, with stratification factors of the combination of smoking status and prior GBT as fixed factors.
CONVERT Study

Cumulative Rate of Sputum Culture Conversion

Shown at the first month of conversion

- ALIS + GBT (N = 224)
- GBT Alone (N = 112)

Adjusted OR (95% CI) = 4.22 (2.08, 8.57)

P < 0.0001

- **Baseline**: 4.9 (n = 11) vs. 5.4 (n = 6)
- **Month 1**: 15.2 (n = 34) vs. 8.0 (n = 9)
- **Month 2**: 23.7 (n = 53) vs. 8.9 (n = 10)
- **Month 3**: 27.2 (n = 61) vs. 8.9 (n = 10)
- **Month 4**: 29.0 (n = 65) vs. 8.9 (n = 10)

The first of 3 consecutive negative sputum cultures must be achieved by Month 4 to meet the primary culture conversion endpoint by Month 6.

Griffith DE, et al. ATS 2018

May 18-23, San Diego, CA. A5915.
CONVERT Study
6 Minute Walk Test

<table>
<thead>
<tr>
<th>Analysis Group (n)</th>
<th>Baseline Mean meters (SD)</th>
<th>LS Mean Change at Month 6 vs Baseline (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIS + GBT (220)</td>
<td>425.7 (127.6)</td>
<td>-1.9 (-24.0, 20.2)</td>
<td>0.72b</td>
</tr>
<tr>
<td>GBT alone (111)</td>
<td>420.4 (126.7)</td>
<td>1.3 (-22.2, 24.9)</td>
<td></td>
</tr>
<tr>
<td>All converters (70)</td>
<td>457.9 (120.6)</td>
<td>16.8 (-10.2 to 43.8)</td>
<td>0.011c</td>
</tr>
<tr>
<td>All nonconverters (191)</td>
<td>427.7 (120.5)</td>
<td>-7.9 (-30.5 to 14.7)</td>
<td></td>
</tr>
</tbody>
</table>

Baseline is defined as the last non-missing value prior to first dose of study drug; n is the number of patients with a baseline score and at least one post-baseline score.

MMRM model with pattern-mixture modeling of missing values due to dropout, which includes treatment, month, the treatment-by-month interaction, and the combination of smoking status and prior multi-drug regimen as fixed factors, the baseline 6MWT distance as a covariate and baseline 6MWT distance-by-month interaction.

ANCOVA model of change from baseline to each visit in 6MWT is based on 6-month completers and includes converter status, the combination of smoking status and prior multi-drug regimen as fixed factors, and the baseline 6MWT distance as a covariate.

LS, least squares.

CONVERG Study

Safety Population Summary

<table>
<thead>
<tr>
<th>Parameter, n (%)</th>
<th>ALIS + GBT N = 223</th>
<th>GBT Alone N = 112</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any TEAE</td>
<td>219 (98.2)</td>
<td>102 (91.1)</td>
</tr>
<tr>
<td>Any serious TEAE</td>
<td>45 (20.2)</td>
<td>20 (17.9)</td>
</tr>
<tr>
<td>Any TEAE of Special Interest a</td>
<td>122 (54.7)</td>
<td>34 (30.4)</td>
</tr>
<tr>
<td>TEAE leading to death</td>
<td>6 (2.7)</td>
<td>5 (4.5)</td>
</tr>
</tbody>
</table>

Serious TEAE occurring in ≥ 3% of patients in either arm

<table>
<thead>
<tr>
<th>Event</th>
<th>ALIS + GBT</th>
<th>GBT Alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia</td>
<td>8 (3.6)</td>
<td>2 (1.8)</td>
</tr>
<tr>
<td>COPD exacerbation</td>
<td>7 (3.1)</td>
<td>1 (0.9)</td>
</tr>
<tr>
<td>Hemoptysis</td>
<td>6 (2.7)</td>
<td>5 (4.5)</td>
</tr>
</tbody>
</table>

TEAE of Special Interest a occurring in ≥ 3% of patients in either arm

<table>
<thead>
<tr>
<th>Event</th>
<th>ALIS + GBT</th>
<th>GBT Alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyspnea</td>
<td>48 (21.5)</td>
<td>10 (8.9)</td>
</tr>
<tr>
<td>Hemoptysis</td>
<td>39 (17.5)</td>
<td>15 (13.4)</td>
</tr>
<tr>
<td>Wheezing ± bronchospasm</td>
<td>20 (8.9)</td>
<td>3 (2.7)</td>
</tr>
<tr>
<td>COPD exacerbation</td>
<td>18 (8.1)</td>
<td>3 (2.7)</td>
</tr>
<tr>
<td>Tinnitus</td>
<td>17 (7.6)</td>
<td>1 (0.9)</td>
</tr>
<tr>
<td>Dizziness</td>
<td>14 (6.3)</td>
<td>3 (2.7)</td>
</tr>
<tr>
<td>Hearing loss b</td>
<td>10 (4.5)</td>
<td>7 (6.3)</td>
</tr>
</tbody>
</table>

a Defined as pre-specified events known to be attributed to parenteral amikacin and inhalation of antibiotics.

b Includes preferred terms Hypoacusis, Deafness neurosensory, and Deafness.

TEAE, treatment-emergent adverse event.
CONVERT Study
Most Common TEAEs – Safety Population

<table>
<thead>
<tr>
<th>Preferred Term</th>
<th>ALIS + GBT N = 223 Patients, n (%)</th>
<th>GBT Alone N = 112 Patients, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysphonia</td>
<td>102 (45.7)</td>
<td>1 (0.9)</td>
</tr>
<tr>
<td>Cough</td>
<td>83 (37.2)</td>
<td>17 (15.2)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>48 (21.5)</td>
<td>10 (8.9)</td>
</tr>
<tr>
<td>Hemoptysis</td>
<td>39 (17.5)</td>
<td>15 (13.4)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>36 (16.1)</td>
<td>8 (7.1)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>28 (12.6)</td>
<td>5 (4.5)</td>
</tr>
<tr>
<td>Nausea</td>
<td>25 (11.2)</td>
<td>4 (3.6)</td>
</tr>
<tr>
<td>Oropharyngeal pain</td>
<td>24 (10.8)</td>
<td>2 (1.8)</td>
</tr>
</tbody>
</table>

TEAE, treatment-emergent adverse event.
CONVERT Study
Common Adverse Event Onset Over Time

ALIS + GBT (N=223)

- Dysphonia
- Dyspnea
- Cough
- Oropharyngeal pain
- Fatigue
- Nausea
- Diarrhea
- Hemoptysis

GBT Alone (N=112)

- Dysphonia
- Dyspnea
- Cough
- Oropharyngeal pain
- Fatigue
- Nausea
- Diarrhea
- Hemoptysis

*TEAEs occurring in >10% of patients in either arm.
Summary

- ALIS is a novel amikacin formulation that, combined with GBT, improved sputum conversion rates in adults with amikacin-susceptible, treatment-refractory MAC lung disease compared with GBT alone.

- In an exploratory analysis, converters had a greater change from baseline to Month 6 than non-converters in the 6MWT distance regardless of treatment arm (LS mean difference, 24.71).

- Addition of ALIS to GBT was associated with higher rates of TEAEs, predominantly mild or moderate in severity and respiratory in nature. Incidences of most frequent TEAEs declined after the first month.

- Data from the CONVERT study demonstrate that ALIS may have a role in the treatment of refractory MAC lung disease and support further evaluation of ALIS in other MAC therapy roles, such as initial therapy, maintenance therapy, and treatment of other NTM pulmonary pathogens.
Acknowledgments

• We thank the patients and their families for their support and participation, and the study investigators, study coordinators, and support staff across all sites.

• Financial support for this study was provided by Insmed Incorporated.
Authors

David E Griffith
Univ of Texas Health Sci Ctr at Tyler, Tyler, TX

Anne E O'Donnell
Div Pulmonary, Crit Care and Sleep Med, Georgetown Univ Hosp, Washington, DC

Stephen J Ruoss
Div Pulmonary and Crit Care Med, Dept Med, Stanford Univ Sch of Medicine, Stanford, CA

Gina Eagle
Insmed Incorporated, Bridgewater, NJ

Theodore K Marras
Dept Med, Univ Toronto, and Toronto Western Hosp, Univ Health Network, Toronto, ON, Canada

Jae-Joon Yim

Rachel M Thomson
Univ of Queensland, Gallipoli Med Res Inst, Brisbane, QLD, Australia

Patrick A Flume
Medical Univ of South Carolina, Charleston, SC

Felix C Ringshausen
Dept Respir Med, Hannover Med Sch, and German Ctr for Lung Res, Hannover, Germany

Timothy R Aksamit
Pulmonary Disease and Critical Care Med, Mayo Clinic, Rochester, MN

Michael R Loebinger
Host Defense Unit, Royal Brompton Hosp, and Imperial College, London, UK

Stephen K Field
Cumming Sch of Med, Univ of Calgary, Calgary, AB, Canada

Naoki Hasegawa
Keio University Hospital, Tokyo, Japan

Lucy C Morgan
Concord Clinical School, Univ of Sydney, Sydney, NSW, Australia

James Nezamis
Insmed Incorporated, Bridgewater, NJ

Kozo Morimoto
Fukujuji Hosp, Japan Anti-Tuberculosis Assoc, Tokyo, Japan

Paola F Castellotti
TB Reference Centre, Villa Marelli Institute/Niguarda Hospital, Milan, Italy

Kevin L Winthrop
OHSU-PSU School of Public Health, Portland, OR

Doreen J Addrizzo-Harris
Div Pulmonary, Crit Care and Sleep Med, NYU Sch of Medicine, New York, NY

Adam T Hill
Dept Respir Med, Royal Infirmary of Edinburgh and Queen’s Med Res Inst, Univ of Edinburgh, Edinburgh, UK